
Lab 7. Bayesian inference using RevBayes, continued

Due Sunday, November 20, 2022 at 3 pm

In today’s lab, we are going to pick up where we left off last week and continue our
RevBayes journey. First, we will use Rev – the language underlying RevBayes – to write
our own simple Markov chain Monte Carlo (MCMC) simulation, in order to get a sense of
what exactly it is doing and why it works. Next, we will apply our knowledge of Rev and
MCMC to phylogenetics, and learn about some challenges that are specific to Bayesian
phylogenetic inference: namely, prior choice.

Part 1: Archery and Markov chain Monte Carlo

What follows has been adapted from a RevBayes tutorial developed by Prof. Tracy
Heath’s lab at the Iowa State University. You can access the full version from

https://revbayes.github.io/tutorials/mcmc/archery.html

Last time, we mentioned that most of the time, we cannot calculate posterior distributions
analytically, that is, with pen and paper. Instead, we have to rely on simulations. The idea
of estimating parameter values using simulation is surprisingly old and long predates
the existence of electronic computers (look up Buffon’s needle if you are interested), but it
wasn’t until sufficiently powerful computers became available in the 1990s that one such
simulation method, called “Markov chain Monte Carlo” or MCMC for short, exploded in
popularity.

To make sure we understand what MCMC is doing, we will once again start with a
simple, tractable model. Specifically, we will estimate the probability distribution of an
archer’s arrows landing at a particular distance from the center of a target:

1

https://revbayes.github.io/tutorials/mcmc/archery.html

To construct our model, we will assume that these distances follow an exponential distri-
bution with some unknown mean µ (mu), which corresponds to the expected distance from
the bullseye. We could interpret this as an estimate of the archer’s skill: an experienced
archer’s µ would be smaller than a beginner’s. The exponential distribution tells us that
an arrow is much more likely to land at a small distance from the center than at a large
distance:

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Distance from bullseye

P
ro

ba
bi

lit
y

de
ns

ity

Let’s further assume our Bayesian archer shot n arrows at the target, with some average
distance d̄ from the bullseye. It turns out that d̄ follows a gamma distribution with two pa-
rameters: the shape, here equal to n, and the rate, equal to n

µ . (We’ve already encountered
the gamma distribution in Lecture 10.3, when modeling rate variation across characters.)
The mean m of the gamma distribution can be computed as:

m =
shape
rate

=
n
n
µ

= µ

We already know this quantity: it represents the expected distance from the bullseye, or the
archer’s accuracy. The variance v of our gamma distribution is equal to

v =
shape
rate2 =

n(
n
µ

)2 =
µ2

n

and represents the archer’s precision, or dispersion: how far the arrows are expected to
land from each other.

2

If we recall what we learned last week, we can immediately tell that our gamma distribu-
tion represents a model with two parameters, n and µ. Of these, the number of arrows n
is known and fixed, while the expected distance µ is a free parameter that we are going
to estimate. To do so, we first need to place a prior distribution on it. In this example,
we are going to use an exponential prior distribution, with a single parameter denoted λ
(lambda). We are going to set λ to 1, but we could also imagine making this parameter
larger (if we had strong reason to believe that the archer is very accurate) or smaller (if
we believed the opposite).

Returning to the graphical notation introduced in our previous lab, we can represent this
model as follows:

λ

µ n

d̄

Exponential prior{

} Gamma model

The last thing we are going to need before we start the inference process is some actual
data d̄. It turns out that RevBayes can be of assistance in this case, too: we are going
to cheat and generate our data using the very model we just created, based on some pre-
defined “true” value of µ. I use the word “cheat” in a very facetious manner here, because
this workflow is actually perfectly valid and very convenient. In particular, it allows us to
directly compare the estimated value of µ to its known true value, which we can’t ever do
with real data. (If we knew the true values of our parameters, all inference would clearly
be superfluous.) With this in mind, let’s get started!

Note that the different assignment operators we learned about last time tell RevBayes
how different variables should be treated within its own MCMC machinery. Today, how-
ever, we are building our own MCMC simulator from scratch, so we can stick with the
constant-variable assignment operator, <-:

lambda <- 1.0

n <- 10

3

Our “true” µ value, mu true, can be whatever we want it to be:

mu true <- 1.0

Finally, using the rgamma() function, I’m going to make one draw (first argument) from a
gamma distribution with a shape of n (second argument) and a rate of n/mu true (third
argument):

arrow mean <- rgamma(1, n, n/mu true)[1]

Our first step is to initialize the MCMC simulation with some starting value for the esti-
mated parameter mu, which we will do by storing a draw from our exponential prior in
yet another constant variable:

mu <- rexp(1, lambda)[1]

Next, let’s do something new: define our own function describing the likelihood of µ.
This function will take a proposed value of µ as its input, and return its probability den-
sity conditional on the observed data as its output. Once again, the syntax is similar to
R: the function keyword is used to define a function, and the return keyword is used to
return the output. Below, we tell RevBayes to treat the likelihood as gamma-distributed if
the proposed value is non-negative, and to set it to 0 if the proposed value is negative:

function likelihood(mu) {
if (mu < 0.0) {

return 0.0

} else {
return dgamma(arrow mean, n, n/mu, log=false)

}
}

We can define another function to describe the prior probability of a proposed µ value.
Note that in agreement with our definition of prior probabilities, this function does not
depend on the data (arrow mean):

function prior(mu) {
if (mu < 0.0) {

return 0.0

} else {
return dexp(mu, lambda, log=false)

}
}

4

We can also prepare a log file in which we will store the sampled values of µ:

The file is going to have two columns, called "iteration" and "mu"

write("iteration", "mu", "\n", file="archery.log")

Write down the initial value of mu, which we have drawn above

write(0, mu, "\n", file="archery.log", append=TRUE)

And let’s print them to the screen as well:

print("iteration", "mu")

print(0, mu)

Now that all the ingredients are in place, let’s take a detailed look at what our MCMC
simulator is going to do:

1. Generate an initial value for µ – done!

2. Based on the current value µ, draw a new value (denoted µ′, or “mu prime”) from
some proposal distribution q

3. Calculate the acceptance ratio R as follows:

R = min
{

1,
p(d̄ | µ′)
p(d̄ | µ)

× p(µ′)
p(µ)

× q(µ)
q(µ′)

}
= min {1, likelihood ratio× prior ratio× proposal ratio}

Note that we read min {} as “the smaller of”. Therefore, either the product of the
three ratios turns out to be greater than 1, in which case we are always going to
accept the newly proposed value µ′ (= accept with a probability of 1), or it turns out
to be smaller, in which case we will only accept µ′ with probability R. What does
that mean, you ask? That’s where our next step comes in:

4. Draw a random (uniformly distributed) number u from 0 to 1.

if u < R:
Accept the proposal and set µ = µ′

else:
Reject the proposal and keep µ at its current value.

5. Record the current value

6. Go back to step 2

5

All that remains to do is to translate this into Rev. We will use a fixed number of itera-
tions (20,000), storing the sampled parameter values every 20 iterations. We will also use
a uniform proposal distribution q. As we will see in a moment, this distribution will be
centered on the current value of µ, meaning that the difference between the upper bound
of the distribution and µ will be the same as the difference between µ and the lower bound
of the distribution. We will call this difference delta and set it equal to 1:

n iter = 20000

printgen = 20

delta = 1

This delta would be an example of what we call a tuning parameter in MCMC terminol-
ogy, because it tunes the behavior of our proposal. Making it very small ensures that the
newly proposed value µ′ will be very close to the current value µ. This will make it very
likely to get accepted, but it will make the exploration of different values slow and dif-
ficult. Conversely, making it very large will favor bold jumps far away from the current
value, many of which will, however, end up in regions of low posterior probability and
get rejected. Modern MCMC implementations are often capable of “auto-tuning” (yes,
really) their proposals.

Since we want to repeat the same series of operations many times, the natural construct
to use is a for loop:

for(iter in 1:n iter) {
Step 2: propose a new value of mu

mu prime <- mu + runif(n=1, -delta, delta)[1]

This is our Rev implementation of the uniform proposal distribution described above. We
draw a number ranging from negative delta to positive delta (here, from −1 to 1), and
add it to the current value of µ to generate a new, proposed value µ′.

Next, we will use the functions we defined above to compute the prior probabilities and
likelihoods of the proposed and current values, which we will in turn use to compute the
acceptance ratio R:

Step 3: compute the acceptance probability

R <- likelihood(mu prime)/likelihood(mu) * prior(mu prime)/prior(mu)

What happened to the third term of the product, the proposal ratio? It turns out that for
the uniform proposal distribution we chose to use, it is always going to be equal to 1, so
we can just leave it out and move on:

Step 4: accept or reject the proposal

u <- runif(1 ,0, 1)[1]

6

if (u < R) {
Accept the proposal

mu <- mu prime

}

Finally, we will store the current value of µ to our log file and print it to the screen. To
ensure that we only do this every 20th iteration like we said we would, we will divide
the current iteration number (iter) by our printgen variable, and only proceed if the re-
mainder is equal to 0:

Step 5: record the current value

if ((iter % printgen) == 0) {
Write the sampled value to a file

write(iter, mu, "\n", file="archery.log", append=TRUE)

Print the sampled value to the screen

print(iter, mu)

}

End the MCMC simulation by closing the entire for loop with a matching right curly
brace:

}

Hit Enter / Return to execute. We’re done!

For your convenience, all of the above code has been packaged into a single Rev script
available from Canvas (archery.Rev). You can execute a script in RevBayes as follows:

source("/path/to/script.Rev")

1) Open your log file in Tracer. What is the posterior mean of µ? How close is it to the
true value?

2) Repeat the analysis with mu true set to 0.25, but lambda still set to 1. How did this
affect the results? Recall our lectures on Bayesian inference. Why do you think the pos-
terior distribution changed? Is the result “wrong” in light of your prior beliefs?

3) In RevBayes, the uniform proposal distribution has been pre-implemented for us as
mvSlide, which also accepts the delta tuning argument. Refer to the previous lab (and
to the online version of this tutorial, if you like) and re-write our archery exercise in
such a way that it makes use of the standard RevBayes machinery (clamped stochastic
variables, moves, monitors, the mcmc() function). Submit your answer as a Rev script,
i.e., a plain-text file with the .Rev file extension that stores all of your commands.

7

Part 2: Bayesian phylogenetics

We are now familiar enough with RevBayes to try our hand at the task for which it was
designed: Bayesian phylogenetic inference.

What follows has been adapted from RevBayes tutorials developed by April M. Wright
(Southeastern Louisiana University), Michael J. Landis (Washington University in St.

Louis), Sebastian Höhna (Ludwig-Maximilians-Universität), Tracy A. Heath (Iowa State
University), and Brian R. Moore (University of California, Davis). You can access the full

versions from https://revbayes.github.io/tutorials/morph tree/ and
https://revbayes.github.io/tutorials/ctmc/.

First, we will load a character matrix into our RevBayes workspace. RevBayes is fine with
Nexus files, but wants them to be clean. We will therefore delete the ASSUMPTIONS block
(that is, the last four lines) from our Tedford 2009-1.nex file. We will assign the contents
of our dataset to a new workspace object called morpho:

morpho = readDiscreteCharacterData("/Users/David/Tedford 2009-1.nex")

We can immediately create a few “helper” variables that will come in handy later on.
From the mopho object, we can extract the number of taxa in our analysis (here, 39) and
plug it into the formula for the number of branches in our unrooted tree (2n − 3). This
will tell us how many branch lengths we will have to estimate. We can also get a list of
taxon names, which we will use to initialize our tree:

num taxa <- morpho.size()

num branches := 2 * num taxa - 3

taxa <- morpho.names()

Just like in Lab 6, we will create two more workspace variables to hold our moves and
monitors:

moves = VectorMoves()

monitors = VectorMonitors()

We can also specify our outgroup right away:

out group <- clade("Hesperocyoninae")

Now we are ready to place a prior probability distribution on the topology of our tree,
which is the main parameter we are interested in. We will assume that all (2n− 5)!! un-
rooted topologies for n taxa have equal probability, that is, we will specify a uniform dis-
tribution over topologies:

8

https://revbayes.github.io/tutorials/morph_tree/
https://revbayes.github.io/tutorials/ctmc/

topology ∼ dnUniformTopology(taxa, outgroup=out group)

We see that topology is a stochastic variable drawn from the specified prior distribution.
To estimate it, we need to place some moves or proposals on it. As it turns out, the topology
moves we use in Bayesian phylogenetic inference are no different from those we used for
our maximum-parsimony and maximum-likelihood analyses, which we learned about in
Lecture 5.4. Here, we will use the nearest-neighbor interchange (NNI) and subtree prune-
and-regraft (SPR) moves. As you may recall, SPR is a bit more sophisticated than NNI,
so we may want to use it more sparingly: say, one SPR move per every ten NNI moves.
We can do this by specifying weights for our moves, which tell RevBayes how often they
should be applied per iteration, or relative to other moves:

moves.append(mvNNI(topology, weight=num branches))

moves.append(mvSPR(topology, weight=num branches/10.0))

From our maximum-likelihood lectures, we know that the probability of a character go-
ing from one state to another depends not just on the topology of our tree, but also on its
branch lengths. As a result, we have to estimate these as well, and since we are working in
the Bayesian framework, if we want to estimate them, we first have to place a prior prob-
ability distribution on them. As we’ll see further down below, choosing the right prior
distribution for branch lengths can be tricky. For now, we are just going to use a uniform
distribution from 0 to 5, which indicates that all values from 0 to 5 expected changes per
character are equally likely:

for (i in 1:num branches) {
branch lengths[i] ∼ dnUniform(0, 5)

moves.append(mvScale(branch lengths[i]))

}

In the loop above, we draw our branch lengths one by one from the specified prior, and
add them to a newly created vector called branch lengths. With each new branch length,
we also define a move that will propose new values for it, and append it to the previously
created moves vector.

Up until now, we have recorded the values of each parameter we estimated. With branch
lengths, however, there is a problem: they only have a meaning when associated with a
particular topology. Between the two of them, RevBayes and Tracer will try to tell you
that, for example, branch lengths[26] (the 26th element of your branch length vector)
has a posterior mean of 0.05, but because the 26th branch of one topology can be asso-
ciated with a completely different clade than the 26th branch of another topology, that
doesn’t mean anything much in particular. However, one quantity that we can meaning-
fully compare across different topologies is tree length, or the sum of all branch lengths:

tree length := sum(branch lengths)

9

Note that we defined tree length as a deterministic variable: it can vary, so it can’t be
constant, but its value is fully determined by the individual branch lengths – it cannot
vary independently of them.

Similarly, a phylogram – which is what we are estimating here – is fully determined by its
topology and branch lengths. We will therefore assemble it from the topology and branch
lengths we’ve already specified. Specifically, using the treeAssembly() function, we will
tell RevBayes to apply the i-th element of the branch lengths vector to the branch sub-
tending the i-th node in topology, and store the result in another deterministic variable:

tree := treeAssembly(topology, branch lengths)

An alternative approach

Often, there is more than one way to do things in RevBayes. Above, we went through a
3-step process where we first drew from a distribution of topologies, then from a distribution
of branch lengths, and finally assembled a phylogram out of both draws. We could simplify
this approach by drawing directly from a distribution of phylograms:

tree ∼ dnUniformTopologyBranchLength(taxa,

outgroup=out group,

branchLengthDistribution=dnUniform(0, 5))

We can apply the same moves to our phylogram as we did to our topology:

moves.append(mvNNI(tree, weight=num branches))

moves.append(mvSPR(tree, weight=num branches/10.0))

Since we specified our branch lengths all at once instead of one by one (by means of
the branchLengthDistribution argument of the dnUniformTopologyBranchLength()

function), we also need a move that is capable of operating on all branch lengths at once:

moves.append(mvBranchLengthScale(tree, weight=num branches))

Finally, we can still set up our tree length variable, but we need to do it a bit differently:

tree length := tree.treeLength()

At this point, the only thing we need to add to our overall model is the substitution model,
which gives us the exact probabilities of going from one state to a different state along a
branch of a given length. We’ll use the same model we learned about when going over
maximum likelihood, i.e., Paul Lewis’s Mk (Markov k-state) model, with the optional ad-
dition of ascertainment bias correction (Mkv) and among-character rate variation (Mk+Γ).

10

Let’s start with the latter. You may remember from Lecture 10.3 that we usually assume
that the rates of different characters follow a gamma (Γ) distribution, and that we set its
rate β equal to its shape α, so that the mean α

β equals 1. This leaves us with α as the only
parameter we need to estimate. We will therefore treat α as a stochastic variable, draw it
from some prior distribution, and place a move on it:

Let's use a broad uniform distribution from 0 to 1,000,000:

alpha ∼ dnUniform(0, 1E6)

moves.append(mvScale(alpha, weight=2.0))

You may also recall that to simplify the calculations, we break up – or “discretize” – the
continuous gamma distribution into a number of rate categories (usually four). This is
easy to do in RevBayes:

The three arguments are: (1) shape, (2) rate, (3) number of categories

char rates := fnDiscretizeGamma(alpha, alpha, 4)

Just like before, we want to make sure that each character receives a rate matrix of the
right dimensions: a binary character should be described by a 2-by-2 matrix, a three-state
character by a 3-by-3 matrix, etc. You still remember what a nightmare it was to convince
IQ-TREE to do this for us. The good news is that with RevBayes, doing this is a lot easier.
As long as we know the maximum number of character states in our matrix, we can iter-
ate over different state numbers (2, 3, 4, etc.), and for each number i, we can extract all the
i-state characters in our matrix and assign them an i-by-i rate matrix:

max num states <- 6

Define a helper variable to count distinct rate matrices:

j = 1

We will start from 2, because there are no constant (1-state) characters

in the Tedford et al. matrix

for (i in 2:max num states) {

We will create temporary copies of our character matrix, which we can freely modify
without the original data being affected. Each copy will form one element of a vector
called partitions. To make sure that the 2-state partition forms the 1st element, the 3-
state partition forms the 2nd element, etc., we will make sure that the index is one smaller
than the current number of states:

partitions[i - 1] <- morpho

Only keep those characters whose number of states equals i

partitions[i - 1].setNumStatesPartition(i)

11

We could imagine a case in which our dataset contains, say, 2-state, 3-state, and 5-state
characters, but no 4-state characters. To prevent our loop from stumbling over such a
case, we will check whether the number of i-state characters is greater than zero, and
only move on if it is:

How many i-state characters do we have?

nc = partitions[i - 1].nchar()

if (nc > 0) {
Q[j] := fnJC(i)

What happened here? We created an Mk rate matrix with k = i states. From Paul Lewis’s
2001 paper linked in Lab 5, you may remember that the Mk model for morphological data
was derived by generalizing an earlier Jukes-Cantor (JC) model for DNA sequences. This
explains why the function for setting up an Mk model is called fnJC() in RevBayes. It
takes a single argument corresponding to the desired number of states, and since the Mk
model has no free parameters, its rate matrix is fully determined by this number, making
it a deterministic variable. Once the rate matrix has been created, we assign it to the j-th
element of a vector called Q.

Next, we are going to put it all together:

characters[j] ∼ dnPhyloCTMC(tree=tree, Q=Q[j], type="Standard",

siteRates=char rates,

coding="variable")

A lot has happened here! We built a stochastic variable for the character data by drawing
from a distribution called the phylogenetic continuous-time Markov chain, or dnPhyloCTMC

for short. This distribution ties together everything we’ve specified so far: the tree topol-
ogy with branch lengths (jointly specified by tree), the substitution model (specified
through its rate matrix Q), and the model of how rates of change vary across characters
(char rates). We additionally told RevBayes that it would be dealing with morphological
(“standard”) data, and asked it to correct for ascertainment bias by specifying that only
variable characters should be considered (coding="variable").

Now we just have to clamp this variable to our observed character data:

characters[j].clamp(partitions[i - 1])

Increment counter

j = j + 1

Close the if-conditional and the for-loop

}
}

12

Ordered characters

So far we have assumed that all our multistate characters are unordered, and as such
correctly described by the Mk model. This happens to be true of the Tedford et al. dataset
we are using as an example, but other matrices may contain a mixture of ordered and
unordered characters. This is how we would deal with such a situation in RevBayes:

ordered char indices <- [14, 23, 32, 38, 41, 57]

Create temporary copies of the character data

ordered <- morpho

unordered <- morpho

Drop all characters and put back only those that are ordered

ordered.excludeCharacter(1:morpho.nchar())

ordered.includeCharacter(ordered char indices)

Drop the ordered characters but keep the rest

unordered.excludeCharacter(ordered char indices)

idx = 1

ix = 1

Only multistate characters can be ordered, so we start iterating from 3

for (i in 3:max num states) {
ordered partitions[i - 2] <- ordered

ordered partitions[i - 2].setNumStatesPartition(i)

nco = ordered partitions[i - 2].nchar()

if (nco > 0) {
Q ord[idx] := fnOrderedRateMatrix(i)

char ord[idx] ∼ dnPhyloCTMC(tree=tree, Q=Q ord[idx], type="Standard",

siteRates=char rates, coding="variable")

char ord[idx].clamp(ordered partitions[i - 2])

idx = idx + 1

}
}

Back to unordered characters, which can be binary: start iterating from 2

for (j in 2:max num states) {
unordered partitions[j - 1] <- unordered

unordered partitions[j - 1].setNumStatesPartition(j)

nc = unordered partitions[j - 1].nchar()

if (nc > 0) {
Q unord[ix] := fnJC(j)

char unord[ix] ∼ dnPhyloCTMC(tree=tree, Q=Q unord[ix], type="Standard",

siteRates=char rates, coding="variable")

char unord[ix].clamp(unordered partitions[j - 1])

ix = ix + 1

}
}

13

We’re done! Now we just combine everything into a single model:

mymodel = model(tree)

Let’s see if we can graph this overall model using the notation we introduced in Lab 6:

0 5 0 106Ntax

bli τ α

tree cr

char. kQk

i ∈ 2Ntax − 3

k ∈ {2, 3, 4, 6}

Uniform

Discrete uniform

Uniform

Discretized gamma

Mk

PhyloCTMC

Here, Ntax is the number of taxa, bli is the i-th branch length, τ is the tree topology, “cr” are
the character rates, and k is the number of states. For clarity, the stochastic variables are
annotated with the type of prior distribution from which they were drawn. The dashed
rectangles represent vectors, or more generally repetition: they tell us that, for example,
the process of drawing a branch length from the uniform prior distribution is repeated
2Ntax − 3 times, i.e., once for every branch in our tree.

At this point, we should define our monitors:

monitors.append(mnScreen(printgen=10))

monitors.append(mnModel(filename="Tedford phylo.log", printgen=10))

monitors.append(mnFile(filename="Tedford phylo.trees", printgen=10, tree))

The first two of these should look familiar: they just print the values of continuous param-
eters (such as alpha or tree length) to the screen or to a specified log file, respectively.

14

What’s new here is the third monitor, which records the values of only those parameters
that we pass in as arguments. In this case, the monitor will print trees annotated with
branch lengths to a separate file.

One issue we need to address at this point is the fact that MCMC analyses start from dif-
ferent randomly picked initial points, and when exploring the parameter space, they may
have trouble crossing the “valleys” of low posterior probability that separate the high-
probability “peaks”. As a result, there is a real danger that a single MCMC run may get
stuck at a particular peak. However, as we will learn in upcoming lectures, the whole idea
behind the MCMC is that the number of samples collected from a particular region of the
parameter space is proportional to its posterior probability: for example, if 95% of sam-
pled trees contain clade x, we would conclude that the posterior probability of clade x is
95%. If the simulation gets stuck, this will no longer hold true. To address this problem,
we will run two MCMC analyses at the same time. If both of them converge on the same
distribution (i.e., if they end up sampling very similar parameter values), we can be more
confident that this distribution really is the posterior.

mymcmc = mcmc(mymodel, monitors, moves, nruns=2)

It takes some time for the MCMC to converge on the posterior distribution: since the
starting point is usually chosen at random, it is likely to be quite lousy, and the number
of samples collected in the region around this starting point will likely be out of propor-
tion to its posterior probability. If we were to plot the (log) posterior probability against
the number of collected samples, we would find that during this initial wandering, the
analysis climbs rapidly toward higher-probability regions:

15

In MCMC theory, we call this the “burnin”, and since the samples collected during this
period are not representative of the posterior distribution, we discard them. This can be
done after the fact, but we can also tell RevBayes in advance to not even bother to collect
samples from, say, the first 2000 iterations. We can also use this period to tune our pro-
posals (see above):

mymcmc.burnin(generations=2000, tuningInterval=10)

mymcmc.run(generations=20000)

For your convenience, all of the above code has been packaged into a single Rev script
available from Canvas (Tedford phylo.Rev).

The analysis we just set up takes about 20 minutes to finish. Once it’s done, RevBayes will
have created the following files in your working directory:

• Tedford phylo run 1.log

• Tedford phylo run 1.trees

• Tedford phylo run 2.log

• Tedford phylo run 2.trees

Load the two files with the .log extension into Tracer, highlight both of them in the top
left pane, and make sure you’ve selected the “Trace” tab in the right pane. The trace shows
the parameter values sampled over the course of the analysis:

A well-behaved analysis, like the one shown above, should not exhibit any large-scale
trends (no increase or decrease). Instead, the trace should resemble white noise or – as

16

it’s also sometimes described – a “hairy caterpillar” randomly oscillating around a more
or less stable value. Moreover, the traces from both runs (here shown in red and green)
should overlap: if they don’t, your runs got stuck on different peaks. In our analysis,
we should examine the traces for at least the following statistics: Posterior, Likelihood,
Prior, alpha, the four elements of the char rates vector, and tree length. We should
also check that their effective sample sizes (ESS) exceed 200 after combining both runs.

4) Re-run the analysis above on your pasta dataset. If all of this feels a bit overwhelm-
ing, don’t worry. Start by examining the Tedford phylo.Rev script. Think about which
parts of the code are generally applicable, and which you’ll need to tailor to your own
data. (Hint: there are probably fewer of the latter than you might think!) Refer to the
section on ordering if appropriate. After you’re done, use the information above to as-
sess whether or not your analysis has converged. Was the specified burnin sufficient,
or are there more samples that you need to discard? Justify your answer.

This is all nice, but we still want to see the tree. However, we have 2 × (20, 000/10) =
4,000 of them. (If you don’t see why, spend some time thinking about this.) This is a very
important point: the result of a Bayesian phylogenetic analysis is the posterior distribution of
trees. We can choose a single tree to represent this distribution, just like we often choose a
single number – say, the mean – to represent the distribution of some continuous variable.
However, that’s just a summary of the result, not the result itself. There are several differ-
ent summary trees we can compute. The strict consensus, which we used for maximum
parsimony, is not often used in Bayesian inference, but the 50% majority-rule consensus
remains pretty common. Here, we will explore two additional summaries:

1. To obtain the maximum clade credibility (MCC) tree, we first calculate the frequency
at which every clade present in a given tree occurs in the entire posterior sample.
As we learned above, this frequency approximates the clade’s posterior probability.
We then assign each tree a score equal to the product of the clade frequencies, and
choose the tree with the highest score.

2. We can also simply pick the tree with the highest posterior probability. That would
be the so-called maximum a posteriori (MAP) tree. It is analogous to the maximum
likelihood tree, except that the quantity we are maximizing is no longer just the
likelihood, but rather the likelihood multiplied by the prior.

We will first load the trees outputted by RevBayes back into the program, and assign them
to a new type of workspace variable called “tree trace”:

trace1 = readTreeTrace("Tedford phylo run 1.trees", treetype="non-clock",

burnin = 0)

trace2 = readTreeTrace("Tedford phylo run 2.trees", treetype="non-clock",

burnin = 0)

trace combined = [trace1, trace2]

17

The treetype="non-clock" argument just tells RevBayes that we want the trees to be
treated as phylograms (with branch lengths in expected changes per character) rather
than chronograms (with branch lengths in units of calendar time).

Now it’s just a matter of telling RevBayes where we want the summary trees to be printed:

mcc tree = mccTree(trace=trace combined, file="my MCC tree.tre")

map tree = mapTree(trace=trace combined, file="my MAP tree.tre")

5) Use FigTree to visualize your MCC and MAP trees. Expand the “Node Labels” menu
and choose “posterior” from among the “Display” options: this will show you the pos-
terior probability of each clade. Save an image of at least one of the two summary trees
and insert it into your answer sheet. How does it compare to your most parsimonious
and maximum-likelihood trees from the previous weeks? Briefly describe its topology
and posterior probabilities.

6) Change the upper bound of the uniform prior on branch lengths from 5 to 0.5, and
re-run the analysis. What happens? Save an image of your summary tree(s) – MAP,
MCC, or both – and include it in your report. Is this tree “better” or “worse” than the
original one?

7) In Lab 5, we played around with the branch lengths of our tree, treating them as
equal, proportional, or completely independent among the individual partitions. We
can do this in RevBayes as well. Based on your newly acquired knowledge of Rev, can
you come up with a piece of code that would give each partition a separate set of branch
lengths? Give it your best shot!

18

