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The fish clade Pelagiaria, which includes tunas as its most famous members,
evolved remarkable morphological and ecological variety in a setting not gener-
ally consideredconducive todiversification: theopenocean.Relationshipswithin
Pelagiariahaveproven elusivedue to short internodes subtendingmajor lineages
suggestive of rapid early divergences. Using a novel sequence dataset of over
1000 ultraconservedDNA elements (UCEs) for 94 of the 286 species of Pelagiaria
(more than 70% of genera), we provide a time-calibrated phylogeny for this
widely distributed clade. Some inferred relationships have clear precedents
(e.g. the monophyly of ‘core’ Stromateoidei, and a clade comprising ‘Gempyli-
dae’ and Trichiuridae), but others are unexpected despite strong support (e.g.
Chiasmodontidae + Tetragonurus). Relaxed molecular clock analysis using
node-based fossil calibrations estimates a latest Cretaceous origin for Pela-
giaria, with crown-group families restricted to the Cenozoic. Estimated mean
speciation rates decline from the origin of the group in the latest Cretaceous,
although credible intervals for root and tip rates are broad and overlap in
most cases, and there is higher-than-expected partitioning of body shape diver-
sity (measured as fineness ratio) between clades concentrated during the
Palaeocene–Eocene. By contrast, more direct measures of ecology show
either no substantial deviation froma nullmodel of diversification (diet) or pat-
terns consistent with evolutionary constraint or high rates of recent change
(depth habitat). Collectively, these results indicate a mosaic model of diversifi-
cation. Pelagiarians show high morphological disparity and modest species
richness compared to better-studied fish radiations in contrasting environ-
ments. However, this pattern is also apparent in other clades in open-ocean
or deep-sea habitats, and suggests that comparative study of such groups
might provide a more inclusive model of the evolution of diversity in fishes.
1. Introduction
The open ocean represents one of the largest habitats on Earth. Highly connected
and seemingly homogeneous in comparison to environments that are structurally
complicated, patchy or readily subdivided, the global pelagic realm appears
an unpromising setting for reproductive isolation and subsequent speciation
[1–3]. Despite broad ranges and high mobility of larvae and adults [4], there are
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conspicuous examples of diversification among open-ocean
fishes [5]. Perhaps the most striking is Pelagiaria, a group
comprising nearly 300 species placed in 15 taxonomic families
[6]. Pelagiaria includes tunas, which are among the most
commercially significant, anatomically well-understood and
physiologically remarkable of all fishes [7]. Tunas represent
only about 5% of pelagiarian species, and are joined by a diver-
sity of less prominent but no less spectacular lineages, including:
swallowers (Chiasmodontidae), which contain bioluminescent
species as well as those that engulf prey larger than them-
selves [8]; butterfishes and kin (Stromateoidei), which possess
remarkable pharyngeal feeding structures and often develop
commensal relationships with pelagic invertebrates [9]; scab-
bardfishes (Trichiuridae), with long, eel-like bodies [10]; the
butterfly kingfish (Gasterochisma), which evolved endothermy
independently of the closely related tunas [11]; and the myster-
ious ragfish (Icosteus), which possesses a weakly mineralized,
largely cartilaginous skeleton, and displays contrasting juvenile
and adult forms once assigned to separate species [12].

How Pelagiaria diversified in the open ocean remains an
outstanding question. Previous studies hypothesized that
the group represents an ancient adaptive radiation, catalysed
by ecological release arising from the Cretaceous/Palaeogene
(K/Pg) extinction [6,13,14]. This interpretation rests on circum-
stantial evidence: palaeontological and molecular estimates of
an early Palaeogene origin; inconsistent support for deep
divergences suggestive of rapid diversification among anato-
mically disparate lineages; and selective extinction of some
pelagic fish groups at the K/Pg that could have opened
ecological opportunities in open-ocean settings. The dominant
model of adaptive radiation posits rapid taxonomic and
ecological divergence early in clade history [15], but several
obstacles have prevented a direct test of thismacroevolutionary
hypothesis for Pelagiaria. First, pelagiarian interrelationships
arewildly inconsistent between studies (electronic supplemen-
tary material, figure S1). Second, the time scale for pelagiarian
diversification is unclear, with molecular clock estimates
ranging from late Eocene (ca 35 Ma) for the clade as a whole
[16,17] to Late Cretaceous (ca 70 Ma) formore nested radiations
[18]. Third, patterns of phenotypic, ecological, and lineage
diversification remain unquantified for this group.

We assembled a dataset of ultraconserved DNA elements
(UCEs) and their flanking sequences representing over 1000
loci sampled from nearly three quarters of known genera
and all families of Pelagiaria except the monotypic Amarsipi-
dae. We married these new genetic resources with other data
from modern pelagiarians in order to: (i) infer phylogenetic
relationships; (ii) test the hypothesis of early Cenozoic diver-
gence; (iii) quantify patterns of phenotypic, ecological, and
lineage diversification to test the previous hypothesis of
adaptive radiation [19,20]. More broadly, we seek to establish
a mature systematic and evolutionary framework for Pela-
giaria that can inform our understanding of diversification
in the open ocean and other expansive, spatially continuous
habitats, thereby providing a contrast to extensively studied
fish systems associated with settings like reefs [21–23].
2. Material and methods
(a) Sequencing protocols
We generated new sequence data for 108 samples, spanning 94 of
the 286 species of Pelagiaria (71% of genera) and 14 outgroup
species. We followed laboratory protocols for DNA extraction,
genomic library preparation, hybrid-enrichment and sequencing
from [24], targeting a set of approximately 1200 UCE loci useful
for phylogenetic studies of acanthomorphs [25]. We generated
data matrices of 75% (alignment of each locus contains 84 of
112 taxa) and 95% (106 of 112 taxa) completeness for primary
phylogenetic analyses. The electronic supplementary material
contains additional details of this and other analyses.
(b) Phylogenetic analyses
We adopted three phylogenetic approaches. First, we performed
maximum likelihood (ML) and Bayesian phylogenetic inference
on partitioned, concatenated alignments for both 95% and 75%
complete matrices. Second, we conducted Bayesian concordance
analysis (BCA) using BUCKy version 1.4.4 [26,27] in order
to evaluate the agreement in phylogenetic signal among individ-
ual loci in our dataset. Third, we performed coalescent-based
analyses in the program ASTRAL v. 4.4.4 [28] using datasets
of loci containing sequences for at least 75% and 95% of our
sampled species.
(c) Divergence-time estimation
We incorporated fossil-based age priors for 20 nodes, 14 within
Pelagiaria and 6 among outgroups. Prior distributions were
empirically informed by the age distribution of additional
fossil outgroups as in [24,25]. We used two strategies to estimate
divergence times for a fixed topology obtained from the Bayesian
and ML analyses of the 75% complete matrix, which both recov-
ered topologically identical trees. First, we performed dating
analyses on 10 independent subsets of 25 UCE loci in BEAST
v. 1.8 [29]. Second, we used MCMCTree from the PAML package
[30] to incorporate larger amounts of sequence data (by-site par-
titioning: 61 947 bp; locus-partitioning: 76 956 bp or 93 loci) into
our divergence-time estimates than is feasible in BEAST. We
used lognormal calibration densities for BEAST analyses and
uniform densities (with 5% probability mass beyond the soft
maximum bound) for MCMCTree analyses (further details in
electronic supplementary material). In order to incorporate tem-
poral and topological uncertainty into subsequent comparative
analyses, we generated two sets of 100 trees from the posterior
distribution of BEAST analyses. Our first set of trees for compara-
tive analyses addresses temporal uncertainty, and was drawn
from the post-burnin runs of the fixed-topology BEAST analyses
described above. To incorporate uncertainty in timing and
relationships, we drew trees from the posterior distribution of a
different BEAST analysis that estimated divergence times using
25 randomly selected UCE loci but which did not impose a
topological constraint.
(d) Quantifying patterns of lineage diversification
We assessed patterns of diversification dynamics within
Pelagiaria using BAMM 2.5.0 [31,32] on each of 100 individual
trees from the posterior sample of the topologically uncon-
strained and constrained BEAST divergence dating analyses
described above, with adjustments for incomplete taxonomic
coverage using family-specific sampling fractions. For compari-
son, we also estimated speciation rates for Pelagiaria and
additional marine fish clades by using the R package fishtree
[33] and by parsing BAMM outputs given in the supplement
of Rabosky et al. [34]. We report estimates that allow time-
varying rate regimes for consistency with our results (λBAMM of
[34]), with the caveat that phylogenies differ (in terms of top-
ology, time scale and sampling fraction) between our study
and [34].
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(e) Quantifying patterns of morphological and
ecological diversification

We examined three sets of morphological and ecological traits:
fineness ratio (relative body depth; fork length divided by maxi-
mum body depth as measured from published images; n = 80),
an index of body elongation reflecting the principal axis of
body shape variation in many surveys of fish diversity [21] and
relevant to locomotor mode and drag reduction [35]; depth ecol-
ogy compiled from rfishbase [36], measured as log10 of mean
(average of reported maxima and minima; n = 70) depths; and
diet data binned categorically as large, evasive prey (e.g. fishes
and squids), gelatinous zooplankton (e.g. jellyfishes, salps), and
smaller zooplankton, based on the food item that had the highest
score for the metric reported for each species (i.e. per cent fre-
quency occurrence or total wet weight of food item) in the
literature (n = 66). Fineness ratio and depth were subjected to
subclade disparity through time (DTT) analyses [37] using the
R package GEIGER [38]. Deviations from the Brownian null
were assessed using the rank-envelope test [39], which indicates
both the presence of significant deviations and their timing. Posi-
tive deviations signal greater within-subclade variation than
expected, while negative deviations reflect higher than expected
partitioning of variation between subclades [37]. The latter is
often interpreted as consistent with models of adaptive radiation
[39]. Diet data were examined using the comparative approach
applied by Ribeiro et al. [40], which detects time intervals charac-
terized by more or fewer shifts in a multistate, discrete trait than
expected under a simulated null. We modified this procedure
by extending it across multiple trees, recording significant
deviations within 1 Myr intervals for each tree.
3. Results
(a) Phylogenetic relationships
Monophyly of Pelagiaria is well supported in both concate-
nated and coalescent-based analyses (figure 1; electronic
supplementary material, figures S1–S4), as is that of all tradi-
tional families with the exception of ‘Gempylidae’. Likewise,
relationships within families are resolved and strongly suppor-
ted, and show broad correspondence to past morphological
analyses [42–46].

Several lineages classified in monotypic or monogeneric
families (Arripis, Icosteus aenigmaticus and Pomatomus saltatrix)
behave as rogue taxa (electronic supplementary material,
figure S5), showing inconsistent relationships between
phylogenies inferred under different approaches. We invari-
ably resolve three large suprafamilial clades: (i) Caristiidae,
Bramidae, Scombrolabrax heterolepis (Scombrolabracidae),
‘Gempylidae’ and Trichiuridae; (ii) Scombridae as the sister
lineage of a group containing Chiasmodontidae and the
species of Tetragonurus; and (iii) Stromateidae as sister to a
lineage containing species of Ariomma and Nomeidae, repre-
senting a ‘core’ stromateoid radiation. The relationships of
these three major suprafamilial clades to one another, and to
Centrolophidae, are inconsistent between analyses.

Some relationships in each of the suprafamilial clades
are found in a larger proportion of gene trees than alterna-
tive topologies, resulting in relatively high genome-wide
concordance factor (CF) estimates (electronic supplementary
material, figure S6). The highest sister-lineage CF estimates
are for Chiasmodontidae + Tetragonurus (CF = 0.495 [95% CI:
0.469–0.521]), ‘Gempylidae’ + Trichiuridae (CF = 0.482 [95%
CI: 0.458–0.506]) and Ariomma +Nomeidae (CF = 0.445
[95% CI: 0.420–0.472]). Scombrolabrax heterolepis and Stromatei-
dae each scored high CF estimates for bipartitions with their
sister clades (‘Gempylidae’ + Trichiuridae and Ariomma +
Nomeidae, respectively). The rogue taxa Arripis, Icosteus
aenigmaticus, and Pomatomus saltatrix show equivocal results
when examined through individual UCE gene trees, and are
resolved with numerous candidate sister lineages in nearly
equal numbers of gene trees. Pomatomus saltatrix exemplifies
this pattern, with an equal proportion of loci resolving it in a
bipartition with either Scombridae or Arripis, while the 95%
confidence interval for genome-wide concordance factors
for either of these taxa overlap with those of eight other
families. Scombridae does not behave like a rogue taxon, but
six families, including the three rogue taxa, appear in biparti-
tions with Scombridae at higher frequencies than either
Chiasmodontidae or Tetragonurus alone. However, the com-
bined number of loci that support bipartitions of Scombridae
with Chiasmodontidae and Tetragonurus is higher than the
number supporting alternative topologies.

(b) Divergence-time estimates
Divergence time estimates were congruent between topologi-
cally constrained analyses, with broadly overlapping 95%
credible intervals for most nodes. We refer to dates inferred
from an analysis of 25 UCE loci in BEAST unless otherwise
noted (figure 1; electronic supplementary material, figure S7),
with age estimates from this and MCMCTree analyses
provided in electronic supplementary material (electronic
supplementary material, table S1 and figure S8). We estimate
the age of crown Pelagiaria as 72.76 Ma, or latest Campanian,
and plausible times of origin span nearly the entire
Campanian–Maastrichtian interval of the Late Cretaceous
(95% HPD: 66.39–81.65 Ma). MCMCTree analyses yield
younger age estimates for the pelagiarian root (67.72–
66.44 Ma) and narrower credible intervals for this and other
nodes; the analysis with by-site partitioning cannot exclude
the possibility that the crown originated after the K/Pg.
Short internodes characterize the deepest divergences within
Pelagiaria, and well-supported sub-clades originate around
or shortly after the K/Pg boundary: Stromateidae +Ariomma +
Nomeidae (‘core’ stromateoids), Tetragonurus +Chiasmodon-
tidae, Scombridae, Bramidae + Caristiidae, Scombrolabrax
heterolepis + ‘Gempylidae’ + Trichiuridae. Origins for crown
Stromateidae, Chiasmodontidae, Bramidae, ‘Gempylidae’
and Trichiuridae fall within the Eocene. Crown groups for all
other adequately sampled, non-monotypic families are
Miocene in age. The rogue taxa Pomatomus saltatrix, Icosteus
aenigmaticus, and Arripis branch deeply within pelagiarian
phylogeny, implying tens of millions of years of independent
evolutionary history for each.

(c) Patterns of lineage diversification
BAMManalyses find little support for diversification dynamics
of subclades that differ significantly from that of the entire radi-
ation, with the credible set inferred for a majority of
topologically unconstrained and constrained trees comprising
a single rate regime (88 and 100%, respectively; electronic sup-
plementary material, figure S9). Estimated mean rates at the
roots of individual trees are higher than those for their tips,
but there is substantial variation in mean rates and the degree
of decrease across trees (figure 2a; electronic supplementary
material, figures S9–S11). The mean of mean rates for the



Figure 1. Time-calibrated phylogeny of Pelagiaria based on topology inferred from 75% complete data matrix (1007 UCE loci). Statistical support values for nodes are
indicated by monochrome shaded discs. Maximum likelihood bootstrap (ML) and Bayesian posterior probability (BPP) support are indicated by the left and right halves
of the discs, respectively. Nodes without discs received support of 100% ML and 1.0 BPP. Red discs indicate the placement of fossil calibrations, with numerals corre-
sponding to calibration numbers given in electronic supplementary material. Pampus argenteus, Ariomma indicum, Ruvettus pretiosus, Promethichthys prometheus: J. E.
Randall (CC BY-NC); Peprilus burti: © R. Robertson (with permission); Ariomma bondi: © J. Kolding (with permission); Cubiceps whiteleggii: H. B. Osmany (CC BY-NC);
Pomatomus saltatrix: NOAA; Icosteus aenigmaticus: J. P. Williams (CC BY-NC); Arripis trutta: Australian National Fish Collection/CISRO (CC BY-NC); Aphanopus carbo:
© Pedro Niny Duarte/Universitário dos Açores (with permission). All other images from [41] ( pls 144 B,G,E; 145 B; 217 D-E; 219 D-E; 220 F-G; 221 E; 223 E;
224 B,D,F-G; 233 A, G-E), © Tokai University Press, used with permission. See electronic supplementary material table S2 for further details.
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Figure 2. Patterns of evolutionary diversification in Pelagiaria. (a) BAMM-estimated mean speciation rates for 100 time-scaled phylogenies drawn from the posterior
distribution of a topologically constrained BEAST divergence dating analysis (n = 100). Dashed vertical line indicates the K/Pg boundary. (b) Proportion of trees showing
significant deviations from a subclade disparity through time (DTT) trajectory based on a constant rate Brownian motion null model for fineness ratio. Bar height at a
given timestep indicates number of trees showing significant positive (above horizontal line) or negative (below horizontal line) deviations from the null. Grey envelope
represents an accumulation curve, indicating the total number of trees showing at least one interval of significant deviation before that time. (c) Proportion of trees
showing significant deviations from a subclade disparity through time (DTT) trajectory based on a constant rate Brownian motion null model for log10 (mean depth). (d )
Contour mapped [47] consensus of trees used in (a–c) showing evolution of fineness ratio. (e) Contour mapped consensus of trees used in (a–c) showing evolution of
depth ecology. Differences between trees in (d ) and (e) reflect differing availability of data for fineness ratio and depth ecology. Abbreviations: A., Arripidae; Bram.,
Bramidae; C., Caristiidae; Ce., Centrolophidae; Chia., Chiasmodontidae; I., Icosteidae; P., Pomatomidae; S., Scombrolabracidae; Scomb., Scombridae; Strom., ‘core’ Stro-
mateoidei (Ariommatidae + Nomeidae + Stromateidae); T., Tetragonuridae; Trich.: Trichiuroidei (‘Gempylidae’ + Trichiuridae).
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constrained and unconstrained tree sets, respectively, are
0.149 lMyr−1 (range of means = 0.0634–0.292 lMyr−1) and
0.184 lMyr−1 (0.0769–0.351 lMyr−1) at the base of the tree,
0.0732 lMyr−1 (0.0469–0.108 lMyr−1) and 0.0942 lMyr−1

(0.0568–0.147 lMyr−1) at the tips, and 0.0963 (0.0537–
0.155 lMyr−1) and 0.122 lMyr−1 (0.0668–0.203 lMyr−1) overall.
Credible intervals about the mean values of root and tip rates
are broad, and these overlap for nearly all trees (unconstrained:
98/100; constrained: 97/100; electronic supplementary
material, figure S11).

(d) Patterns of morphological and ecological
diversification

We reject constant-rate, diffusive change in fineness ratio in
Pelagiaria. Rank-envelope tests show significant negative
excursions overwhelmingly placed in the early phases of pela-
giarian diversification for the samples of topologically
unconstrained and constrained trees (figure 2b; electronic sup-
plementarymaterial, figure S10b). Half of all trees show at least
one negative deviation at or before the earliest Eocene (i.e.
where the height of the accumulation curve is 50 trees; con-
strained: 56 Ma; unconstrained: 59 Ma), and a majority of
trees show negative deviations before the end of the epoch
(constrained: 66%; unconstrained: 95%). This implies the con-
centration of differentiation in gross body form early in
pelagiarian phylogeny, but mostly occurring after the K/Pg.
Positive deviations are recorded for a minority of trees near
the Recent for both tree samples (figure 2b; electronic sup-
plementary material, figure S10b). By contrast, depth ecology
does not show negative excursions from a Brownian null
early in pelagiarian history, but amajority of trees (constrained:
88%; unconstrained: 92%) show significant positive excursions
from Brownian expectations in the Neogene (figure 2c; elec-
tronic supplementary material, figure S10c). Unlike body
shape and depth ecology, there is no strong indication that
evolution of diet deviates significantly from null expectations;
only a few trees show more changes than expected during the
Neogene (electronic supplementary material, figure S12a,c).
We infer a probable diet of evasive prey for the last common
ancestor of pelagiarians (electronic supplementary material,
figure S12b,d).
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4. Discussion and conclusion
(a) Agreement and disagreement with past

phylogenetic hypotheses
Our analysis supports many patterns of relationships
inferred from morphology, including the monophyly of all
pelagiarian families excluding ‘Gempylidae’ (see also [48]),
and details of intrafamilial relationships. The latter is apparent
for Trichiuridae [44], Chiasmodontidae [46] and especially
Scombridae, where UCE data agree with the established
tribal classification [45,49] more closely than previous mole-
cular studies [6,16,18,50]. Our results confirm nesting of
Trichiuridae within ‘gempylids’ [43,44,48,51,52], and the
sister-group relationship between Caristiidae and Bramidae
mirrors anecdotal associations [53,54].

Our results do not support two motifs of morphological
classifications: Scombroidei, a clade comprising Scombridae
and Trichiuroidei to the exclusion of other groups [55]; and
Stromateoidei, encompassing Centrolophidae, Nomeidae, Stro-
mateidae, and the species of Ariomma and Tetragonurus [9].
Scombrolabrax heterolepis is the sister lineage of trichiuroids to
the exclusion of scombrids, consistent with pre-cladistic
interpretations [56,57]. This, along with resolution of Gastero-
chisma melampus as the earliest diverging scombrid, indicates
characters used to unite Scombridae and Trichiuroidei [48] are
homoplastic. As in previous molecular analyses [6,16,50,58],
our phylogeny does not resolve Stromateoidei as a clade.
Particularly striking is the well-supported sister-group relation-
ship between the putative stromateoid Tetragonurus and
chiasmodontids. Although they share superficial similarities
like dark coloration and mesopelagic ecology, these lineages
displaymarked differences, particularlywith respect to feeding.
Tetragonurus possesses greatly enlarged posterior pharyngeal
bones (comprising fused third and fourth pharyngobranchials)
that extend into papillae-lined pharyngeal sacs classically
regarded as a stromateoid synapomorphy, coupled with short,
box-like jaws bearing slicing dentary teeth [9]. These features
appear to relate to a near-exclusive diet of gelatinous zooplank-
ton [9]. By contrast, chiasmodontids have large jaws bearing
long teeth combined with a distensible stomach and body
walls, permitting ingestion of large fishes whole and inspiring
the group’s common name of swallowers.
(b) The time scale of pelagiarian evolution
Our time-calibrated phylogeny indicates the emergence of sev-
eral distinctive crown pelagiarian lineages near the K/Pg
boundary, with these groups first known from body fossils
around or just before the Palaeocene–Eocene boundary
[59,60]. Quantitative biostratigraphic models reject or cast con-
siderable doubt on Cretaceous origins for some pelagiarian
sub-clades [6], although we estimate a latest Cretaceous age
for the clade as a whole (cf. [25,34]). This consilience stands
in contrast to previous studies delivering much younger
[16,61] or older [18] estimates that might reflect inadequate or
inaccurate calibration schemes. Short stem lineages associated
with the crown radiations of scombrids, trichiuroids, and
core stromateoids suggest that their distinctive morphologies
arose in as little as 5–7 Myr. Similar circumstances surround
the origin of other distinctive percomorph morphologies
[24,40] in terms of the duration over which these new body
shapes evolved as well as their absolute timing.
The appearance of scombrids, trichiuroids and other dis-
tantly related predatory percomorphs in the early Palaeogene
has been interpreted as a response to the extinction of major
Mesozoic groups of predatory marine teleosts [13,14,62]. The
parallel origin of these lineages is one of the more promising
possible examples of ecological release associated with the
radiation of percomorphs at this time [25]. By contrast, poten-
tial drivers of diversification of other pelagiarian groups are
less obvious, although open-ocean ecosystems underwent
apparent collapse [63] and subsequent restructuring [64–66]
associated with the K/Pg. These suggest a broad range of
ecological opportunities of the kind thought to be critical in
triggering divergence [15]. For example, a hypothesized pro-
liferation of jellyfishes in the early Palaeogene [63] could have
provided the substrate for diversification of pelagiarian
clades that directly feed upon [9] or are otherwise associated
with gelatinous zooplankton [67].
(c) Mosaic diversification in Pelagiaria
Our comparative analyses provide insights on two critical
questions. First, they indicate the degree to which Pelagiaria
follows patterns predicted for adaptive radiations [15], as
well as the more specific hypothesis of diversification trig-
gered by extinction-mediated ecological release [6]. Second,
and more generally, they provide insight into the origin of
diversity in expansive habitats that seem unlikely settings
for evolutionary radiations [1].

The range of mean tip rates for Pelagiaria (0.0469–
0.147 lMyr−1) spans that recovered by Rabosky et al. [34]
(0.0761 lMyr−1), but is lower than tip rates across actinop-
terygians as a whole (0.164 lMyr−1 [34]). The range of mean
overall pelagiarian speciation rates (0.0537–0.203 lMyr−1)
encompasses both past estimates for the clade (0.0577 [34]) as
well as those over the history of actinopterygians (0.141 lMyr−1

[68]; 0.0904 lMyr−1 [34]). Faster speciation rates at the root of
pelagiarian phylogeny than at the tips could be interpreted
as a consequence of a diversity-dependent slowdown under
a niche-filling model of adaptive radiation [69], but this peak
in speciation predates hypothesized ecological opportunity
in the early Palaeocene and the major divergences in overall
body form centred in the Palaeocene–Eocene (figure 2b;
electronic supplementary material, figure S10b). Planktonic
foraminifera do show a pronounced rise in richness during
theMaastrichtian [70] thought to stem fromocean stratification
conducive to diversification [71]. No corresponding increase
in origination of pelagic fish tooth morphotypes occurs
at this time [66], implying that if diversification did occur
during this interval, it might have been morphologically
cryptic. However, broadly overlapping credible intervals for
tip and root rates, along with past estimates of more constant
speciation rates in the group over much of the Cenozoic [34],
suggest a cautious approach to interpreting temporal variation
in pelagiarian speciation.

Patterns of phenotypic and ecological evolution only
partially conform to theoretical expectations for adaptive radi-
ations [15]. The early history of Pelagiaria is characterized by
substantial partitioning of body-form diversity between
rather than within lineages, manifest in the establishment of
morphologically distinctive clades. These deviations are over-
whelmingly placed in the early Palaeogene, making them
consistent with morphological diversification mediated by
the K/Pg and observations from the fossil record [14,66].
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Patterns recovered for ecological attributes differ. In the case of
depth, significant deviations from the null are positive and con-
centrated in the Neogene, long after either the origin of the
clade or the K/Pg. This could reflect either an Ornstein–Uhlen-
beck or accelerating model of evolution for depth ecology
for this recent interval [39]. The timing of changes in dietary
preference lack consistent deviations from a null model,
indicating constant transitions over clade history.

The absence of unanimous support for an ‘early burst’
model of evolution across these attributes reflects a more
general pattern in comparative studies, which yield similarly
ambiguous evidence even for clades considered textbook
examples of adaptive radiation [72]. In response, some have
advocated a return to amore classicmodel of adaptive radiation
[73] that focuses on the origin of major dietary or locomotor
adaptations associated with higher taxa rather than species
[19]. Others have argued that an emphasis on ‘early burst’
dynamics obscures understanding of the more nuanced
nature of evolutionary diversification [23]. We find evidence
of mosaic radiation in Pelagiaria: potentially declining rates of
speciation from the time of the clade’s origin followed later by
establishment and subsequent stasis of gross body forms and
presumed locomotor mode [35], but substantial lability in
aspects of depth ecology and diet throughout the history of
the group. Pelagiaria therefore combines some features of
‘early burst’-style radiation in terms of gross phenotype [40]
with more sustained change in ecological traits [23]. Both our
time-calibrated tree and the fossil record suggest that many dis-
tinctive morphological features associated with feeding in
specific lineages (e.g. non-protrusible jaws in trichiuroids and
scombrids; enlarged fangs in trichiuroids and scombrolabra-
cids; pharyngeal sacs and papillae in ‘stromateoids’ [9,48])
appeared early in pelagiarian history [60,74], with little sub-
sequent modification even as diets within clades have varied.
This finds a parallel in labrids, which show declining rates
for the origin of major anatomical feeding innovations, but
constant—or potentially accelerating—rates of dietary tran-
sition over time [23]. These shared patterns of trophic
flexibility in the face of anatomical specialization are evocative
of Liem’s paradox [75] on a macroevolutionary scale.
(d) Radiation in the open ocean
Diversification of Pelagiaria in what at first might appear to be
the homogeneous environment of the open ocean evokes clas-
sic debates on how diversity can arise and persist in uniform
settings [3]. But as in well-studied radiations, pelagiarians
have clearly diverged along a combination of trophic and
spatial axes. Dietary specializations of the group range from
plankton [76] to gelatinous zooplankton [9] to pelagic arthro-
pods, cephalopods, and fishes [9,76,77]. Pelagiarians have
also partitioned the open ocean along a series of spatial or habi-
tat axes, including depth gradients and intimate associations
with pelagic invertebrates including salps, medusae and
siphonophores [67,78–80].

Pelagiarians show potentially informative differences
with well-studied fish radiations in terms of relative levels
of morphological diversity and species richness. Labrids [23],
South American cichlids [81] and cichlid radiations in both
Lake Victoria and Lake Malawi [82] all outnumber pelagiarian
species richness by more than a factor of two, but these other
radiations are arguably more conservative in terms of body-
shape diversity than pelagiarians. As a crude comparison,
each of these species-rich examples comprises only a single
family or subfamily in contrast to the at least 15 anatomically
disparate families of Pelagiaria. Of these other groups, labrids
make the most useful comparison with pelagiarians: both are
marine, broadly distributed, and originate during the interval
surrounding theK/Pg [23]. However, labrids principally diver-
sified in association with reefs [22], which would seem to
represent a first-order factor underlying macroevolutionary
contrasts with pelagiarians. Both groups have pelagic larvae,
but most pelagiarians have extensive dispersal capabilities at
all stages of life history that should further oppose evolution-
ary differentiation by maintaining gene flow over broad
spatial scales [2]. Indeed, many pelagiarian species have
wide geographical distributions [4], with some consisting of
a single, global populationwith no obvious geographical struc-
ture [83]. High variation in estimated speciation rate across
individual trees in our analyses complicates comparison with
other lineages, and is compounded by potentially misleading
comparisons of mean rates from analyses restricted to focal
clades (as of Pelagiaria here) to those where rate estimates for
the focal clade are informed by data for other lineages [84].
A recent analysis of diversification dynamics across fishes
[34] considers these contrasting groups within a common
phylogenetic and analytical framework, and finds mean over-
all speciation rates for pelagiarians (0.0569 lMyr−1) are lower
than those of labrids (0.0789 lMyr−1) and other iconic reef
fish lineages (e.g. Acanthuridae: 0.0900 lMyr−1; Chaeto-
dontidae: 0.116 lMyr−1; Pomacentridae: 0.102 lMyr−1). None
of these reef fish groups shows an early peak in speciation
rate, but instead show an increase in rate commencing in the
Neogene and continuing to the present day [34].

Pelagiarians display a remarkable range of morphologies
given their modest species richness; scombrids alone nearly
equal the body-shape disparity of labrids, which comprise
an order of magnitude more species [22]. This pattern is
not unique to pelagiarians, and many radiations associated
with pelagic or deep-sea settings show a combination of
high morphological disparity and low taxonomic richness
(Lampridiformes [85] and Stephanoberyciformes [86] represent
extreme examples). Some high-richness, low-disparity fish
clades in the deep sea (e.g. Myctophidae) have species-specific
bioluminescence hypothesized to facilitate speciation [87],
and might therefore represent exceptions to a general rule.
These patterns, and the contrasts they might make with the
better-documented macroevolutionary histories of fishes in
other environmental settings like reefs [22,23,88], are little
studied but could help provide a more inclusive comparative
perspective on the evolution of diversity in fishes.
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